How to Apply A Function to Specific Columns In Pandas?

8 minutes read

To apply a function to specific columns in pandas, you can use the apply() method along with the axis parameter to specify whether you want to apply the function row-wise or column-wise. To apply a function to specific columns, you can use the apply() method along with the subset parameter to specify the columns you want to apply the function to. Additionally, you can use lambda functions to apply custom functions to specific columns in pandas. Overall, by using these techniques, you can easily apply a function to specific columns in pandas to manipulate and analyze your data efficiently.

Best Python Books of December 2024

1
Learning Python, 5th Edition

Rating is 5 out of 5

Learning Python, 5th Edition

2
Head First Python: A Brain-Friendly Guide

Rating is 4.9 out of 5

Head First Python: A Brain-Friendly Guide

3
Python for Beginners: 2 Books in 1: Python Programming for Beginners, Python Workbook

Rating is 4.8 out of 5

Python for Beginners: 2 Books in 1: Python Programming for Beginners, Python Workbook

4
Python All-in-One For Dummies (For Dummies (Computer/Tech))

Rating is 4.7 out of 5

Python All-in-One For Dummies (For Dummies (Computer/Tech))

5
Python for Everybody: Exploring Data in Python 3

Rating is 4.6 out of 5

Python for Everybody: Exploring Data in Python 3

6
Learn Python Programming: The no-nonsense, beginner's guide to programming, data science, and web development with Python 3.7, 2nd Edition

Rating is 4.5 out of 5

Learn Python Programming: The no-nonsense, beginner's guide to programming, data science, and web development with Python 3.7, 2nd Edition

7
Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition

Rating is 4.4 out of 5

Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition


How to apply a function to both numeric and categorical columns separately in pandas?

You can achieve this by using the .apply() method along with the .select_dtypes() method in pandas. Here is an example of how to apply a function separately to numeric and categorical columns in a DataFrame:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
import pandas as pd

# Sample DataFrame
data = {'A': [1, 2, 3, 4],
        'B': ['foo', 'bar', 'foo', 'bar'],
        'C': [5, 6, 7, 8]}
df = pd.DataFrame(data)

# Define a function to apply
def square(x):
    return x**2

# Apply the function to numeric columns
numeric_cols = df.select_dtypes(include='number').columns
df[numeric_cols] = df[numeric_cols].apply(square)

# Apply the function to categorical columns
categorical_cols = df.select_dtypes(exclude='number').columns
df[categorical_cols] = df[categorical_cols].apply(lambda x: x.str.upper())

print(df)


In this example, the square function is applied to numeric columns to square the values, and a lambda function is applied to uppercase the values in categorical columns. You can replace these functions with any custom function you want to apply to the columns.


How to apply a function to specific columns in pandas using lambda functions?

You can apply a function to specific columns in a pandas DataFrame using lambda functions by using the apply method along with the axis parameter to specify whether the function should be applied column-wise or row-wise.


Here's an example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
import pandas as pd

# Create a sample DataFrame
data = {
    'A': [1, 2, 3, 4],
    'B': [5, 6, 7, 8],
    'C': [9, 10, 11, 12]
}
df = pd.DataFrame(data)

# Define a lambda function to apply to specific columns
func = lambda x: x * 2 if x.name in ['A', 'B'] else x

# Apply the function to specific columns using the apply method
df_updated = df.apply(func, axis=0)

print(df_updated)


In this example, the lambda function func doubles the values in columns 'A' and 'B'. By specifying axis=0, the function is applied column-wise to the DataFrame. The resulting DataFrame df_updated will have the values in columns 'A' and 'B' doubled.


How to apply a function to specific columns in pandas with parallel processing?

To apply a function to specific columns in a pandas DataFrame with parallel processing, you can use the apply method along with the multiprocessing module. Here is an example to demonstrate how to achieve this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import pandas as pd
from multiprocessing import Pool

# Sample data
data = {'A': [1, 2, 3, 4], 'B': [10, 20, 30, 40], 'C': [100, 200, 300, 400]}
df = pd.DataFrame(data)

# Function to be applied to specific columns
def custom_function(column):
    return column * 2

# Specify the columns to apply the function to
columns_to_process = ['B', 'C']

# Create a pool of workers for parallel processing
pool = Pool()

# Apply the custom function to specified columns in parallel
results = pool.map(custom_function, [df[col] for col in columns_to_process])

# Update the DataFrame with the processed data
for i, col in enumerate(columns_to_process):
    df[col] = results[i]

# Close the pool of workers
pool.close()
pool.join()

print(df)


In this example, we define a custom function custom_function that multiplies the input by 2. We then specify the columns B and C that we want to apply this function to. We create a pool of workers using the Pool class from the multiprocessing module and use the map method to apply the function to the specified columns in parallel.


Finally, we update the original DataFrame with the processed data and close the pool of workers. The result will be a DataFrame with the specified columns processed in parallel.

Facebook Twitter LinkedIn Telegram Whatsapp Pocket

Related Posts:

To apply a function to multiple multiindex columns in pandas, you can use the apply function along with axis=1 parameter. If you have a DataFrame with a multiindex column, you can specify the level of the multiindex that you want to apply the function to. This...
To combine two lists of pandas columns, you can simply use the + operator to concatenate the two lists. This will create a new list that contains all the columns from both lists. You can then use this combined list to access the columns from a pandas dataframe...
One common way to aggregate 100 columns in pandas is to use the apply() function in combination with a lambda function. You can create a lambda function that applies a desired aggregation method, such as sum, mean, min, max, etc., on the 100 columns. Then, you...