Best Python Data Manipulation Tools to Buy in October 2025

Learning the Pandas Library: Python Tools for Data Munging, Analysis, and Visual



Pandas Workout: 200 exercises to make you a stronger data analyst



Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter



Pandas for Everyone: Python Data Analysis (Addison-Wesley Data & Analytics Series)



SRADMO Reading Room Decor, Panda Read Books Wood Box Sign Desk Decor, Panda Gifts, Book Theme Wooden Block Box Decoration for Reading Nook Corner Library Classroom Desk Shelf Table
-
RUSTIC CHARM: A STYLISH WOODEN BOX SIGN FOR ANY INTERIOR STYLE.
-
PERFECT GIFT: IDEAL FOR BIRTHDAYS, HOLIDAYS, AND SPECIAL OCCASIONS.
-
VERSATILE DECOR: ELEVATE AESTHETICS IN ANY ROOM OR OFFICE SPACE.



Pandas Cookbook: Practical recipes for scientific computing, time series, and exploratory data analysis using Python



HAMAMONYO Tenugui 'Pandas’ Library'
- PREMIUM 100% COTTON FOR SOFTNESS AND DURABILITY.
- VERSATILE SIZE (35.4 IN×13.4 IN) FOR MULTIPLE USES.
- UNIQUE DESIGN IMPROVES WITH EACH WASH, ENHANCING LONGEVITY.



Miss Adola Aesthetic Panda Tote Bag for Women - with Magnetic Buckle and Zipper Inner Pocket for Lady Cloth Cotton Tote Bag for Gym, Work, Travel, Library, Shopping,Full Panda
-
SECURE YOUR ESSENTIALS WITH MAGNETIC BUCKLE AND ZIPPERED POCKETS.
-
SPACIOUS DESIGN ACCOMMODATES ALL YOUR DAILY NEEDS AND ITEMS.
-
ECO-FRIENDLY, REUSABLE COTTON PERFECT FOR VARIOUS OCCASIONS!



Ultimate Python Libraries for Data Analysis and Visualization: Leverage Pandas, NumPy, Matplotlib, Seaborn, Julius AI and No-Code Tools for Data ... and Statistical Analysis (English Edition)


In Pandas, if you have a string column containing a dictionary and you want to convert it into a dictionary column, you can use the ast
module to help with this conversion. First, you need to import the ast
module by using import ast
. Then, you can apply the ast.literal_eval()
function on the string column to convert the strings into dictionaries. For example, if you have a DataFrame df
with a column dict_string
containing dictionary strings, you can convert it into a dictionary column like this:
import ast df['dict_column'] = df['dict_string'].apply(lambda x: ast.literal_eval(x) if pd.notnull(x) else x)
This code snippet will create a new column dict_column
in the DataFrame df
that contains dictionaries extracted from the strings in the dict_string
column.
What is the recommended approach to convert a dictionary column to multiple rows in pandas?
One recommended approach to convert a dictionary column to multiple rows in pandas is to use the apply
function along with the pd.Series
constructor. Here's a step-by-step guide on how to do this:
- Create a sample DataFrame with a dictionary column:
import pandas as pd
data = {'id': [1, 2, 3], 'values': [{'A': 100, 'B': 200, 'C': 300}, {'A': 150, 'B': 250, 'C': 350}, {'A': 200, 'B': 300, 'C': 400}]}
df = pd.DataFrame(data) print(df)
- Use the apply function along with the pd.Series constructor to convert the dictionary column to multiple rows:
df = df.set_index('id')['values'].apply(pd.Series).stack().reset_index() df.columns = ['id', 'key', 'value'] print(df)
- The resulting DataFrame will have multiple rows with the keys and values from the dictionary column:
id key value 0 1 A 100 1 1 B 200 2 1 C 300 3 2 A 150 4 2 B 250 5 2 C 350 6 3 A 200 7 3 B 300 8 3 C 400
By following this approach, you can convert a dictionary column to multiple rows in pandas.
What is the most efficient way to convert a dictionary in a pandas column to individual columns?
You can use the pandas.DataFrame
constructor along with the apply
method to convert a dictionary in a pandas column to individual columns. Here's an example:
import pandas as pd
Create a sample DataFrame
df = pd.DataFrame({'data': [{'A': 1, 'B': 2}, {'A': 3, 'B': 4}]})
Use the apply method with a lambda function to convert the dictionary to columns
df = pd.concat([df.drop(['data'], axis=1), df['data'].apply(pd.Series)], axis=1)
print(df)
This will convert the dictionary in the data
column to individual columns 'A' and 'B', resulting in the following DataFrame:
A B 0 1 2 1 3 4
What is the most efficient way to convert a dictionary in a pandas DataFrame to a list?
One efficient way to convert a dictionary in a pandas DataFrame to a list is by using the to_dict()
method to convert the DataFrame to a dictionary, and then converting the dictionary to a list using a list comprehension.
Here is an example:
import pandas as pd
Create a pandas DataFrame
data = {'A': [1, 2, 3], 'B': ['foo', 'bar', 'baz']} df = pd.DataFrame(data)
Convert DataFrame to a dictionary
dict_data = df.to_dict(orient='records')
Convert dictionary to a list
list_data = [dict(row) for row in dict_data]
print(list_data)
This will give you a list of dictionaries where each dictionary represents a row in the original DataFrame.
How to filter rows based on dictionary keys in pandas?
You can filter rows in a pandas DataFrame based on dictionary keys by using the loc
method with a boolean condition. Here's an example of how you can filter rows based on dictionary keys:
import pandas as pd
create a sample DataFrame
data = {'A': [1, 2, 3, 4], 'B': [5, 6, 7, 8], 'C': [9, 10, 11, 12]} df = pd.DataFrame(data)
create a dictionary with keys to filter on
keys_to_filter = {'A', 'B'}
filter rows based on dictionary keys
filtered_df = df.loc[:, keys_to_filter] print(filtered_df)
In this example, we create a sample DataFrame df
and a dictionary keys_to_filter
containing the keys 'A' and 'B'. We then use the loc
method to filter rows based on these keys, which results in a new DataFrame containing only columns with keys 'A' and 'B'.
How to perform groupby operations on dictionary columns in pandas?
To perform groupby operations on dictionary columns in pandas, you can use the pd.DataFrame.explode()
function to expand the dictionary values into separate rows, and then use the regular groupby()
function to perform the desired aggregations.
Here is an example code snippet to demonstrate how to perform groupby operations on dictionary columns in pandas:
import pandas as pd
Create a sample dataframe with a dictionary column
data = {'A': [1, 2, 3], 'B': [{'X': 10, 'Y': 20}, {'X': 30, 'Y': 40}, {'X': 50, 'Y': 60}]}
df = pd.DataFrame(data)
Explode the dictionary column into separate rows
df = df.explode('B')
Create new columns from the dictionary keys
df = df.join(pd.DataFrame(df['B'].tolist(), index=df.index))
Perform groupby operations on the expanded dataframe
grouped = df.groupby('X').agg({'Y': 'sum'}).reset_index()
print(grouped)
In this code snippet, we first explode the dictionary column 'B' into separate rows, and then create new columns from the keys of the dictionary. Finally, we perform a groupby operation on the 'X' column and aggregate the values of 'Y' using the sum function.
You can modify the groupby operation according to your requirements, such as counting the occurrences, finding the mean, etc.
How to extract key-value pairs from a dictionary in pandas?
You can extract key-value pairs from a dictionary in pandas by using the items()
method. Here is an example:
import pandas as pd
Create a dictionary
data = {'A': 10, 'B': 20, 'C': 30}
Create a DataFrame from the dictionary
df = pd.DataFrame.from_dict(data, orient='index', columns=['Value'])
Reset the index to get the keys as a column
df.reset_index(inplace=True) df.columns = ['Key', 'Value']
print(df)
This will create a pandas DataFrame with two columns, 'Key' and 'Value', containing the key-value pairs from the dictionary.