How to Customize the Font Size And Style In Matplotlib?

9 minutes read

To customize the font size and style in Matplotlib, you can use the following methods:

  1. Set the font size: Use the plt.rcParams['font.size'] property to set the default font size for text elements in the plots. Example: plt.rcParams['font.size'] = 12
  2. Set the font family/style: Use the plt.rcParams['font.family'] property to set the default font family for text elements in the plots. Example: plt.rcParams['font.family'] = 'serif' To set a specific font style, you can use the fontstyle parameter while plotting specific text elements. Example: plt.text(x, y, 'Text', fontstyle='italic')
  3. Adjust font size/style for individual text elements: When plotting specific text, you can set the font size and style using the fontsize and fontstyle parameters respectively. Example: plt.text(x, y, 'Text', fontsize=14, fontstyle='italic')
  4. Change the title font size: Use the plt.title function to set a title for the plot. To change the font size of the title, use the fontsize parameter. Example: plt.title('Title', fontsize=16)
  5. Change the axis label font size: The x-axis and y-axis labels can be customized using the plt.xlabel and plt.ylabel functions respectively. To change the font size of the axis labels, use the fontsize parameter. Example: plt.xlabel('X Label', fontsize=14)
  6. Change the tick labels font size: The tick labels on the x-axis and y-axis can be customized using the plt.xticks and plt.yticks functions respectively. To change the font size of the tick labels, use the fontsize parameter. Example: plt.xticks(fontsize=12)


Overall, these methods allow you to customize the font size and style in Matplotlib, enabling you to create visually appealing plots as per your preference.

Best Matplotlib Books to Read in 2024

1
Data Visualization in Python with Pandas and Matplotlib

Rating is 5 out of 5

Data Visualization in Python with Pandas and Matplotlib

2
Matplotlib 3.0 Cookbook: Over 150 recipes to create highly detailed interactive visualizations using Python

Rating is 4.9 out of 5

Matplotlib 3.0 Cookbook: Over 150 recipes to create highly detailed interactive visualizations using Python

3
Matplotlib for Python Developers

Rating is 4.8 out of 5

Matplotlib for Python Developers

4
Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib

Rating is 4.7 out of 5

Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib

5
Matplotlib 2.x By Example: Multi-dimensional charts, graphs, and plots in Python

Rating is 4.6 out of 5

Matplotlib 2.x By Example: Multi-dimensional charts, graphs, and plots in Python

6
Matplotlib for Python Developers: Effective techniques for data visualization with Python, 2nd Edition

Rating is 4.5 out of 5

Matplotlib for Python Developers: Effective techniques for data visualization with Python, 2nd Edition

7
Python Data Analytics: With Pandas, NumPy, and Matplotlib

Rating is 4.4 out of 5

Python Data Analytics: With Pandas, NumPy, and Matplotlib

8
Python and Matplotlib Essentials for Scientists and Engineers (Iop Concise Physics)

Rating is 4.3 out of 5

Python and Matplotlib Essentials for Scientists and Engineers (Iop Concise Physics)

9
Hands-On Data Analysis with Pandas: A Python data science handbook for data collection, wrangling, analysis, and visualization, 2nd Edition

Rating is 4.2 out of 5

Hands-On Data Analysis with Pandas: A Python data science handbook for data collection, wrangling, analysis, and visualization, 2nd Edition

10
Data Visualization with Python for Beginners: Visualize Your Data using Pandas, Matplotlib and Seaborn (Machine Learning & Data Science for Beginners)

Rating is 4.1 out of 5

Data Visualization with Python for Beginners: Visualize Your Data using Pandas, Matplotlib and Seaborn (Machine Learning & Data Science for Beginners)


How to customize the font family in Matplotlib?

To customize the font family in Matplotlib, you can follow these steps:

  1. Import the necessary libraries:
1
2
import matplotlib.pyplot as plt
import matplotlib.font_manager as fm


  1. Get the available font names:
1
font_names = fm.findSystemFonts()


This will return a list of available fonts on your system.

  1. Select a font from the available options:
1
font_path = fm.FontProperties(fname=font_names[0]).get_file()


You can choose any font from the list based on your preference by changing the index.

  1. Set the font family for your plot:
1
plt.rcParams['font.family'] = fm.FontProperties(fname=font_path).get_name()


This line sets the selected font as the default font family for your plot.

  1. Display your plot:
1
2
3
4
5
plt.plot([1, 2, 3, 4], [1, 4, 9, 16])
plt.xlabel('X-axis', fontsize=12)
plt.ylabel('Y-axis', fontsize=12)
plt.title('Customized Font Family', fontsize=14)
plt.show()


This code will create a basic line plot with customized font family settings.


Remember to replace font_names[0] with your desired font index if you want to use a different font.


How to change the font size only for y-axis labels in Matplotlib?

To change the font size of only the y-axis labels in Matplotlib, you can use the tick_params method of the y-axis object (ax.yaxis), and pass the argument labelsize to specify the desired font size. Here's an example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
import matplotlib.pyplot as plt

# Create sample data
x = [1, 2, 3, 4, 5]
y = [10, 20, 30, 40, 50]

# Create a figure and axis
fig, ax = plt.subplots()

# Plot the data
ax.plot(x, y)

# Set font size only for y-axis labels
ax.yaxis.tick_params(labelsize=12)

# Show the plot
plt.show()


In the above example, the labelsize argument set to 12 will change the font size of only the y-axis labels.


How to make the font italic in Matplotlib?

To make the font italic in Matplotlib, you can use the fontstyle parameter of the text properties (plt.text() or ax.text()) or the set_fontstyle() method of a Text object.


Here's an example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
import matplotlib.pyplot as plt

# Using text properties
plt.text(0.5, 0.5, 'Italic Text', fontstyle='italic')

# Using a Text object
fig, ax = plt.subplots()
text = ax.text(0.5, 0.5, 'Italic Text')
text.set_fontstyle('italic')

plt.show()


In both examples, the text "Italic Text" will be displayed in italic font.

Facebook Twitter LinkedIn Telegram Whatsapp Pocket

Related Posts:

To change the font of the plots.text() function in Julia, you can use the textfont parameter. This parameter allows you to specify the font family, size, and style for the text in your plot. For example, you can change the font to Arial with a size of 12 and b...
To display text with matplotlib, you can use the plt.text() function. This function allows you to add text to a specific location on the plot by specifying the x and y coordinates and the text itself. You can also customize the font size, font color, font styl...
To change the font size on a Matplotlib plot, you can modify the fontsize parameter of the relevant text elements. Here are the steps to accomplish this:Import the necessary libraries: Start by importing the matplotlib.pyplot module. import matplotlib.pyplot a...