Skip to main content
TopMiniSite

Back to all posts

How to Switch the Index Column In Pandas?

Published on
3 min read
How to Switch the Index Column In Pandas? image

To switch the index column in Pandas, you can make use of the set_index() function and reset_index() function.

To set a different column as the index, you can use the set_index() function by specifying the column name as an argument. This will replace the existing index with the specified column.

Here's an example:

import pandas as pd

Create a dataframe

df = pd.DataFrame({'Name': ['John', 'Alice', 'Bob'], 'Age': [25, 30, 35], 'City': ['New York', 'London', 'Paris']})

Set 'Name' column as the index

df.set_index('Name', inplace=True)

print(df)

Output:

    Age      City

Name
John 25 New York Alice 30 London Bob 35 Paris

To reset the index column to its default numerical index, you can use the reset_index() function. It will remove the current index and set the default index.

Here's an example:

import pandas as pd

Create a dataframe

df = pd.DataFrame({'Name': ['John', 'Alice', 'Bob'], 'Age': [25, 30, 35], 'City': ['New York', 'London', 'Paris']})

Set 'Name' column as the index

df.set_index('Name', inplace=True)

Reset the index

df.reset_index(inplace=True)

print(df)

Output:

Name Age City 0 John 25 New York 1 Alice 30 London 2 Bob 35 Paris

By using these methods, you can easily switch the index column in Pandas as per your requirements.

How to change the index column to a categorical data type in Pandas?

To change the index column to a categorical data type in Pandas, you can use the pd.Categorical() function along with the set_index() method.

Here is an example:

import pandas as pd

Create a sample DataFrame

data = {'A': [1, 2, 3], 'B': [4, 5, 6]} df = pd.DataFrame(data)

Convert the index column to categorical

df.index = pd.Categorical(df.index)

print(df)

Output:

    A  B

0 1 4 1 2 5 2 3 6

In this example, we first import the necessary libraries and create a sample DataFrame. Then, we convert the index column to a categorical data type using the pd.Categorical() function. Finally, we assign the categorical index back to the DataFrame using the set_index() method.

How to change the order of the index column in Pandas?

To change the order of the index column in pandas, you can use the reindex function. Here's an example:

import pandas as pd

Create a sample dataframe

data = {'Name': ['John', 'Alice', 'Bob'], 'Age': [25, 30, 35], 'City': ['New York', 'London', 'Paris']} df = pd.DataFrame(data)

Set 'Name' column as index

df.set_index('Name', inplace=True)

Change the order of index column

new_order = ['Bob', 'Alice', 'John'] df = df.reindex(new_order)

Print the dataframe

print(df)

Output:

   Age      City

Name
Bob 35 Paris Alice 30 London John 25 New York

In this example, we first set the 'Name' column as the index using the set_index function. Then, we define the new order of the index column as a list ['Bob', 'Alice', 'John']. Finally, we use the reindex function to change the order of the index column based on the new order list.

What is the purpose of the index_col parameter in the read_csv function in Pandas?

The index_col parameter in the read_csv function in Pandas is used to specify which column(s) should be used as the index of the resulting DataFrame. By default, Pandas assigns a numeric range index (0, 1, 2, ...) to the DataFrame. However, by specifying an index_col, you can use one or more columns from the CSV file as the unique identifier(s) for each row of data.