TopMiniSite
- 3 min readTo replace characters in Pandas dataframe columns, you can use the str.replace() method along with regular expressions to specify which characters you want to replace and what you want to replace them with. Simply access the column you want to modify using bracket notation, apply the str.replace() method to it, and pass in the old character(s) you want to replace and the new character(s) you want to replace them with.
- 6 min readTo get values outside a specified interval in a Pandas dataframe, you can use boolean indexing.For example, if you want to retrieve values that are less than a certain minimum or greater than a certain maximum, you can use a combination of boolean conditions to filter out the values that fall within the specified interval.You can create a new dataframe that only contains the values outside the interval by applying the negation of the boolean condition that defines the interval.
- 4 min readTo export JSON from iteratively created DataFrames in Pandas, you can first create an empty list to store all the individual DataFrames and then iterate through your data creation process.Each time a new DataFrame is created, you can append it to the list. Once you have finished iterating through all the data creation steps, you can use the Pandas concat() function to combine all the individual DataFrames into a single DataFrame.
- 6 min readTo convert nested JSON to a pandas dataframe, you can use the json_normalize function from the pandas library. This function allows you to flatten nested JSON data into a tabular format that can be easily manipulated using pandas. Simply pass the nested JSON data as an argument to json_normalize and it will automatically convert it into a dataframe. You can then perform various operations on the dataframe such as filtering, sorting, and aggregating the data.
- 3 min readThe "value of object index" in a pandas dataframe refers to the specific value located at the intersection of a particular row and column within the dataframe. Each value in a dataframe has a unique index that can be used to identify and access that specific value. Using the object index allows users to retrieve, modify, or manipulate data within the dataframe at a granular level.
- 3 min readIn Python pandas, you can put two conditions in the sum function by using the bitwise AND operator, which is represented by "&". For example, if you have a pandas DataFrame called df and you want to sum the values in a column where two conditions are met (e.g. column 'A' equals 1 and column 'B' equals 2), you can use the following code: result = df[(df['A'] == 1) & (df['B'] == 2)]['column_name'].
- 3 min readTo create a new column in pandas using a special condition, you can use the np.where() function along with the apply() method. First, define the condition that you want to apply to the DataFrame. Then, use the np.where() function to apply the condition to each row in the DataFrame and create the new column based on the condition. Finally, assign the result to a new column in the DataFrame using the apply() method.
- 3 min readTo import Excel data in pandas as a list, you can use the pd.read_excel() function provided by the pandas library. This function reads data from an Excel file and loads it into a pandas DataFrame. You can then convert the DataFrame into a list by using the values.tolist() method. This will give you a list representation of the data from the Excel file, which you can further manipulate or analyze using pandas or other Python libraries.
- 7 min readWhen you encounter the error message "out of memory" in pandas, it means that your system has run out of available memory to process the data. This error commonly occurs when working with large datasets in pandas, especially when performing operations that require a significant amount of memory.
- 7 min readTo use a dictionary in the np.where clause in pandas, you can pass the dictionary as the first argument and specify the condition as the second argument. The keys of the dictionary represent the conditions, and the values represent the values to be assigned to the corresponding rows that satisfy the condition.For example, suppose you have a DataFrame df and you want to create a new column based on a condition. You can use the np.
- 7 min readIn pandas, in-place operations are generally not recommended as they can lead to unexpected behavior and errors. However, if you still need to perform in-place vectorization in pandas, you can use the apply method with a lambda function to apply a function to each element of a column or DataFrame. For example, you can use df['column'].apply(lambda x: x * 2) to double each element in a column 'column'.