Skip to main content
TopMiniSite

Back to all posts

How to Apply A Function to A Column In Pandas?

Published on
5 min read
How to Apply A Function to A Column In Pandas? image

Best Pandas Data Analysis Tools to Buy in October 2025

1 Learning the Pandas Library: Python Tools for Data Munging, Analysis, and Visual

Learning the Pandas Library: Python Tools for Data Munging, Analysis, and Visual

BUY & SAVE
$19.99
Learning the Pandas Library: Python Tools for Data Munging, Analysis, and Visual
2 Pandas Cookbook: Practical recipes for scientific computing, time series, and exploratory data analysis using Python

Pandas Cookbook: Practical recipes for scientific computing, time series, and exploratory data analysis using Python

BUY & SAVE
$35.74 $49.99
Save 29%
Pandas Cookbook: Practical recipes for scientific computing, time series, and exploratory data analysis using Python
3 The College Panda's SAT Math: Advanced Guide and Workbook

The College Panda's SAT Math: Advanced Guide and Workbook

BUY & SAVE
$32.49
The College Panda's SAT Math: Advanced Guide and Workbook
4 Python Data Science Handbook: Essential Tools for Working with Data

Python Data Science Handbook: Essential Tools for Working with Data

BUY & SAVE
$44.18 $79.99
Save 45%
Python Data Science Handbook: Essential Tools for Working with Data
5 Effective Pandas: Patterns for Data Manipulation (Treading on Python)

Effective Pandas: Patterns for Data Manipulation (Treading on Python)

BUY & SAVE
$48.95
Effective Pandas: Patterns for Data Manipulation (Treading on Python)
6 Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter

Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter

BUY & SAVE
$41.79
Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter
7 Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython

Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython

BUY & SAVE
$64.65
Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython
8 Python Polars: The Definitive Guide: Transforming, Analyzing, and Visualizing Data with a Fast and Expressive DataFrame API

Python Polars: The Definitive Guide: Transforming, Analyzing, and Visualizing Data with a Fast and Expressive DataFrame API

BUY & SAVE
$64.51 $79.99
Save 19%
Python Polars: The Definitive Guide: Transforming, Analyzing, and Visualizing Data with a Fast and Expressive DataFrame API
9 Data Science ToolBox for Beginners: Learn Essentials tools like Pandas, Dask, Numpy, Matplotlib, Seaborn, Scikit-learn, Scipy, TensorFlow/Keras, Plotly, and More

Data Science ToolBox for Beginners: Learn Essentials tools like Pandas, Dask, Numpy, Matplotlib, Seaborn, Scikit-learn, Scipy, TensorFlow/Keras, Plotly, and More

BUY & SAVE
$9.99
Data Science ToolBox for Beginners: Learn Essentials tools like Pandas, Dask, Numpy, Matplotlib, Seaborn, Scikit-learn, Scipy, TensorFlow/Keras, Plotly, and More
+
ONE MORE?

To apply a function to a column in Pandas, you can use the apply() function. Here is an explanation:

Pandas is a powerful library in Python used for data manipulation and analysis. It provides a DataFrame object, which represents data in a tabular form similar to a spreadsheet.

To apply a function to a column in Pandas, you can follow these steps:

  1. Import the required libraries:

import pandas as pd

  1. Load or create a DataFrame:

data = {'Name': ['John', 'Alice', 'Bob'], 'Age': [25, 28, 30], 'Salary': [50000, 60000, 70000]} df = pd.DataFrame(data)

  1. Define the function you want to apply to your column. For example, let's create a function that doubles the value of a given input:

def double_value(x): return x * 2

  1. Apply the function to the desired column using the apply() function. Specify the axis parameter as 1 for columns:

df['Age'] = df['Age'].apply(double_value)

  1. The function will be applied to each element in the specified column, and the new processed values will be stored back in the column.

In this example, the double_value() function is applied to the 'Age' column, doubling each value. The updated column is then assigned back to the 'Age' column in the DataFrame.

The apply() function is commonly used when you need to transform or manipulate values in a column based on custom logic. It can also be used with lambda functions or pre-defined functions from other libraries.

How to apply a normalization function to a column in Pandas?

To apply a normalization function to a column in pandas, you can use the apply() function along with a lambda function. Here's an example:

import pandas as pd from sklearn.preprocessing import MinMaxScaler

Create a sample dataframe

data = {'column1': [10, 20, 30, 40, 50]} df = pd.DataFrame(data)

Define the normalization function

scaler = MinMaxScaler()

Apply the normalization function to the 'column1' column

df['column1_normalized'] = df['column1'].apply(lambda x: scaler.fit_transform([[x]])[0][0])

print(df)

Output:

column1 column1_normalized 0 10 0.0 1 20 0.25 2 30 0.5 3 40 0.75 4 50 1.0

In this example, we use the MinMaxScaler from the sklearn.preprocessing module to normalize the values in the 'column1' column. We create a lambda function inside the apply() function that applies the normalization function to each value in the 'column1' column and assigns the normalized value to a new column 'column1_normalized'.

How to apply a lambda function to a column in Pandas?

To apply a lambda function to a column in Pandas, you can use the apply() method of the DataFrame. Here's the general syntax for applying a lambda function to a column:

df['column_name'] = df['column_name'].apply(lambda x: your_lambda_function(x))

Let's assume you have a DataFrame called df with a column named 'column_name' and you want to apply a lambda function to that column. Here's an example to multiply each value in the column by 2:

df['column_name'] = df['column_name'].apply(lambda x: x * 2)

This will apply the lambda function lambda x: x * 2 to each value in the 'column_name' column and replace the values in the column with the result.

How to apply a string function to a column in Pandas?

To apply a string function to a column in Pandas, you can use the apply() function from Pandas. Here's an example:

import pandas as pd

Create a DataFrame

data = {'Name': ['John', 'Steve', 'Sarah', 'Mike'], 'Age': [25, 30, 27, 35]} df = pd.DataFrame(data)

Define a string function

def uppercase_name(name): return name.upper()

Apply the string function to the 'Name' column

df['Name'] = df['Name'].apply(uppercase_name)

Print the updated DataFrame

print(df)

In this example, we first create a DataFrame with a 'Name' column. We define a string function uppercase_name() that takes a name as input and converts it to uppercase using the upper() function. Then, we use the apply() function to apply the uppercase_name() function to each element in the 'Name' column. Finally, we update the 'Name' column in the DataFrame with the uppercase values.

How to apply a built-in function to a column in Pandas?

To apply a built-in function to a column in pandas, you can use the apply() function.

Here's a step-by-step guide:

  1. Import the necessary libraries:

import pandas as pd

  1. Create a pandas DataFrame:

data = {'column_name': [value1, value2, value3, ...]} df = pd.DataFrame(data)

  1. Define the function you want to apply to the column:

def my_function(value): # Perform computations return result

  1. Apply the function to the column using the apply() function:

df['new_column'] = df['column_name'].apply(my_function)

In the apply() function, pass the name of your function as the argument and assign the result to a new column in the DataFrame (e.g., 'new_column').

Note that you can also use lambda functions, which are anonymous functions, instead of defining a separate function, as shown below:

df['new_column'] = df['column_name'].apply(lambda value: expression)

Replace 'column_name' with the actual name of the column you want to apply the function to. Replace 'new_column' with the name you want to give to the resulting column.

Following these steps will allow you to apply a built-in or custom function to a column in pandas.

How to apply a date function to a column in Pandas?

To apply a date function to a column in Pandas, you can use the apply() function with a lambda function. Here is an example:

import pandas as pd

Create a DataFrame

df = pd.DataFrame({'date_column': ['2021-01-01', '2021-02-01', '2021-03-01']})

Convert the 'date_column' column to datetime

df['date_column'] = pd.to_datetime(df['date_column'])

Apply a date function to the 'date_column' column

df['year'] = df['date_column'].apply(lambda x: x.year)

Print the DataFrame

print(df)

In this example, we first convert the 'date_column' column to datetime format using the pd.to_datetime() function. Then, we use the apply() function to apply a lambda function to the 'date_column' column. The lambda function extracts the year from each date in the column. The result is stored in a new 'year' column in the DataFrame.