Skip to main content
TopMiniSite

Back to all posts

How to Create Summarized Data In Pandas And Python?

Published on
3 min read
How to Create Summarized Data In Pandas And Python? image

Best Data Summarization Tools for Python to Buy in October 2025

1 Statistics: A Tool for Social Research and Data Analysis (MindTap Course List)

Statistics: A Tool for Social Research and Data Analysis (MindTap Course List)

BUY & SAVE
$118.60 $259.95
Save 54%
Statistics: A Tool for Social Research and Data Analysis (MindTap Course List)
2 Data Analytics Essentials You Always Wanted To Know : A Practical Guide to Data Analysis Tools and Techniques, Big Data, and Real-World Application for Beginners (Self-Learning Management Series)

Data Analytics Essentials You Always Wanted To Know : A Practical Guide to Data Analysis Tools and Techniques, Big Data, and Real-World Application for Beginners (Self-Learning Management Series)

BUY & SAVE
$29.99 $38.99
Save 23%
Data Analytics Essentials You Always Wanted To Know : A Practical Guide to Data Analysis Tools and Techniques, Big Data, and Real-World Application for Beginners (Self-Learning Management Series)
3 Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists

Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists

BUY & SAVE
$14.01 $39.99
Save 65%
Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists
4 Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)

Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)

BUY & SAVE
$29.95 $37.95
Save 21%
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
5 Univariate, Bivariate, and Multivariate Statistics Using R: Quantitative Tools for Data Analysis and Data Science

Univariate, Bivariate, and Multivariate Statistics Using R: Quantitative Tools for Data Analysis and Data Science

BUY & SAVE
$105.06 $128.95
Save 19%
Univariate, Bivariate, and Multivariate Statistics Using R: Quantitative Tools for Data Analysis and Data Science
6 Spatial Health Inequalities: Adapting GIS Tools and Data Analysis

Spatial Health Inequalities: Adapting GIS Tools and Data Analysis

BUY & SAVE
$80.61 $86.99
Save 7%
Spatial Health Inequalities: Adapting GIS Tools and Data Analysis
7 A PRACTITIONER'S GUIDE TO BUSINESS ANALYTICS: Using Data Analysis Tools to Improve Your Organization’s Decision Making and Strategy

A PRACTITIONER'S GUIDE TO BUSINESS ANALYTICS: Using Data Analysis Tools to Improve Your Organization’s Decision Making and Strategy

  • AFFORDABLE: SAVE MONEY ON QUALITY READS WITH OUR USED BOOKS!
  • ECO-FRIENDLY: REDUCE WASTE BY CHOOSING PRE-LOVED BOOKS!
  • QUALITY ASSURANCE: EACH BOOK IS INSPECTED FOR GOOD CONDITION!
BUY & SAVE
$89.60
A PRACTITIONER'S GUIDE TO BUSINESS ANALYTICS: Using Data Analysis Tools to Improve Your Organization’s Decision Making and Strategy
+
ONE MORE?

To create summarized data in pandas and Python, you can use the groupby() function in pandas to group your data based on specific criteria. Then, you can use aggregate functions like sum(), mean(), count(), etc. to calculate summary statistics for each group. Additionally, you can use the pivot_table() function to create a pivot table with summarized data. Overall, summarizing data in pandas involves grouping and aggregating your data to get insights into your dataset.

How to create a new column in a DataFrame?

To create a new column in a DataFrame, you can simply assign a new column name to the DataFrame and specify the values for that column.

Here is an example using Python and the pandas library:

import pandas as pd

Create a sample DataFrame

data = {'A': [1, 2, 3, 4, 5], 'B': [10, 20, 30, 40, 50]} df = pd.DataFrame(data)

Create a new column 'C' with some values

df['C'] = ['apple', 'banana', 'cherry', 'date', 'elderberry']

print(df)

This will create a new column 'C' in the DataFrame 'df' with the specified values. You can also assign a single value to the column or use a function to generate values for the new column.

How to merge two DataFrames in pandas?

You can merge two DataFrames in pandas using the merge() function. There are several parameters you can use to specify how the merge should be performed, such as how, on, left_on, right_on, left_index, right_index, and suffixes.

Here is an example of merging two DataFrames based on a common column:

import pandas as pd

Create two sample DataFrames

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'key': ['K0', 'K1', 'K2', 'K3']})

df2 = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3'], 'key': ['K0', 'K1', 'K2', 'K3']})

Merge the two DataFrames based on the 'key' column

merged_df = pd.merge(df1, df2, on='key')

print(merged_df)

This will produce a merged DataFrame with columns from both df1 and df2 based on the common 'key' column. You can also specify different merge options by using the other parameters mentioned earlier.

How to read a CSV file in pandas?

To read a CSV file in pandas, you can use the read_csv() function. Here's an example code snippet on how to read a CSV file named "data.csv" using pandas:

import pandas as pd

Read the CSV file

df = pd.read_csv('data.csv')

Display the first 5 rows of the dataframe

print(df.head())

This code snippet will read the CSV file into a pandas dataframe called df and then display the first 5 rows of the dataframe using the head() function. You can also specify additional options such as specifying a delimiter, header row, column names, etc., when reading a CSV file using pandas.