Skip to main content
TopMiniSite

Back to all posts

How to Plot Pandas Dataframe Using Sympy?

Published on
4 min read
How to Plot Pandas Dataframe Using Sympy? image

Best Tools for Plotting Dataframes Using Sympy to Buy in October 2025

1 Storytelling with Data: A Data Visualization Guide for Business Professionals

Storytelling with Data: A Data Visualization Guide for Business Professionals

  • MASTER DATA STORYTELLING TO ENHANCE IMPACTFUL VISUAL PRESENTATIONS.
  • TRANSFORM COMPLEX DATA INTO CLEAR INSIGHTS FOR BETTER DECISION-MAKING.
  • ENGAGE AUDIENCES EFFECTIVELY USING COMPELLING VISUAL COMMUNICATION.
BUY & SAVE
$23.05 $41.95
Save 45%
Storytelling with Data: A Data Visualization Guide for Business Professionals
2 Hands-On Data Visualization: Interactive Storytelling From Spreadsheets to Code

Hands-On Data Visualization: Interactive Storytelling From Spreadsheets to Code

BUY & SAVE
$36.49 $65.99
Save 45%
Hands-On Data Visualization: Interactive Storytelling From Spreadsheets to Code
3 Data Visualization with Microsoft Power BI: How to Design Savvy Dashboards

Data Visualization with Microsoft Power BI: How to Design Savvy Dashboards

BUY & SAVE
$41.33 $59.99
Save 31%
Data Visualization with Microsoft Power BI: How to Design Savvy Dashboards
4 Python Data Science Handbook: Essential Tools for Working with Data

Python Data Science Handbook: Essential Tools for Working with Data

BUY & SAVE
$44.18 $79.99
Save 45%
Python Data Science Handbook: Essential Tools for Working with Data
5 Advanced Analytics with Power BI and Excel: Learn powerful visualization and data analysis techniques using Microsoft BI tools along with Python and R (English Edition)

Advanced Analytics with Power BI and Excel: Learn powerful visualization and data analysis techniques using Microsoft BI tools along with Python and R (English Edition)

BUY & SAVE
$37.95
Advanced Analytics with Power BI and Excel: Learn powerful visualization and data analysis techniques using Microsoft BI tools along with Python and R (English Edition)
6 Good Charts Workbook: Tips, Tools, and Exercises for Making Better Data Visualizations

Good Charts Workbook: Tips, Tools, and Exercises for Making Better Data Visualizations

BUY & SAVE
$17.58 $35.00
Save 50%
Good Charts Workbook: Tips, Tools, and Exercises for Making Better Data Visualizations
7 Good Charts, Updated and Expanded: The HBR Guide to Making Smarter, More Persuasive Data Visualizations

Good Charts, Updated and Expanded: The HBR Guide to Making Smarter, More Persuasive Data Visualizations

BUY & SAVE
$24.87 $35.00
Save 29%
Good Charts, Updated and Expanded: The HBR Guide to Making Smarter, More Persuasive Data Visualizations
+
ONE MORE?

To plot a pandas dataframe using sympy, you can first convert the dataframe to a sympy expression using the sympy.symbols method. Next, you can use the sympy.plot function to plot the expression. This will generate a plot based on the values in the dataframe. You can customize the plot further by specifying the range of values, labels, and other parameters in the sympy.plot function. This way, you can visualize the data in the pandas dataframe using sympy's plotting capabilities.

How do I use sympy to create a plot of a pandas dataframe?

You can use the sympy.plotting module to create a plot of a pandas dataframe. Here's an example code snippet to achieve this:

import pandas as pd import sympy as sp import matplotlib.pyplot as plt

Create a sample pandas dataframe

data = {'x': [1, 2, 3, 4, 5], 'y': [2, 4, 6, 8, 10]} df = pd.DataFrame(data)

Create sympy symbols for x and y

x = sp.symbols('x') y = sp.symbols('y')

Plot the dataframe using sympy

expr = df['y'].tolist() p = sp.plot(expr, (x, 1, 5))

Show the plot

p.show()

In this code snippet, we first create a sample pandas dataframe with columns 'x' and 'y'. Then, we create sympy symbols for x and y. Next, we extract the 'y' values from the dataframe and use them to create a sympy expression. Finally, we use sp.plot() to create the plot and p.show() to display the plot.

What is the role of the figsize parameter in plotting pandas dataframes with sympy?

The figsize parameter in plotting pandas dataframes with matplotlib in Python allows you to specify the width and height of the figure in inches. This parameter controls the size of the output plot in your visualization.

When using figsize with sympy, you can set the size of the figure that will display your DataFrame. By specifying the figsize parameter, you can control the dimensions of the plot, making it easier to customize and present your data in a clear and visually appealing way.

For example:

import matplotlib.pyplot as plt import sympy.plotting as syp

data = df.plot(figsize=(10, 6)) syp.plot(2*x + 3, figsize=(8, 4)) plt.show()

In the code snippet above, we set the figsize parameter to (10, 6) for the pandas DataFrame plot and (8, 4) for the sympy plot, which will determine the size of the figures displayed for each plot respectively.

What is the syntax for plotting a pandas dataframe using sympy?

To plot a pandas dataframe using sympy, you can use the lambdify function from sympy to convert a sympy expression into a callable function that can be applied to the values in the dataframe. Here is an example of how you can plot a pandas dataframe using sympy:

import pandas as pd import sympy as sp import matplotlib.pyplot as plt

Create a pandas dataframe

data = {'x': [1, 2, 3, 4, 5], 'y': [2, 4, 6, 8, 10]} df = pd.DataFrame(data)

Define a sympy symbol

x = sp.symbols('x')

Define a sympy expression

expression = x**2

Convert the sympy expression to a callable function

f = sp.lambdify(x, expression, 'numpy')

Apply the function to the values in the dataframe

df['z'] = df['x'].apply(f)

Plot the dataframe

plt.plot(df['x'], df['z']) plt.xlabel('x') plt.ylabel('z') plt.title('Plot of x^2') plt.show()

In this example, we create a pandas dataframe with columns x and y, define a sympy expression x**2, convert it to a callable function using lambdify, apply the function to the values in the dataframe, and plot the resulting values.

What is the purpose of plotting a pandas dataframe using sympy?

Using SymPy to plot a pandas DataFrame allows for the visualization of the data in a graphical form. This can help in identifying patterns, trends, outliers, and relationships between variables in the dataset. It provides a quick and intuitive way to explore and analyze the data, which can aid in decision-making and deriving insights from the data.