How to Create A 3D Plot In Matplotlib?

13 minutes read

To create a 3D plot in Matplotlib, you can follow these steps:

  1. Import the necessary libraries:
1
2
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D


  1. Create a figure and an axis:
1
2
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')


  1. Define your data points for the x, y, and z axes:
1
2
3
x = [1, 2, 3, 4, 5]
y = [6, 7, 8, 9, 10]
z = [11, 12, 13, 14, 15]


  1. Plot the 3D data points:
1
ax.scatter(x, y, z, c='r', marker='o')


  1. Set labels for the x, y, and z axes:
1
2
3
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')


  1. Set the title for the plot:
1
ax.set_title('3D Scatter Plot')


  1. Show the plot:
1
plt.show()


This will create a 3D scatter plot with your data points, where each point is represented as a marker in the 3D space defined by the x, y, and z axes.

Best Matplotlib Books to Read in 2024

1
Data Visualization in Python with Pandas and Matplotlib

Rating is 5 out of 5

Data Visualization in Python with Pandas and Matplotlib

2
Matplotlib 3.0 Cookbook: Over 150 recipes to create highly detailed interactive visualizations using Python

Rating is 4.9 out of 5

Matplotlib 3.0 Cookbook: Over 150 recipes to create highly detailed interactive visualizations using Python

3
Matplotlib for Python Developers

Rating is 4.8 out of 5

Matplotlib for Python Developers

4
Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib

Rating is 4.7 out of 5

Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib

5
Matplotlib 2.x By Example: Multi-dimensional charts, graphs, and plots in Python

Rating is 4.6 out of 5

Matplotlib 2.x By Example: Multi-dimensional charts, graphs, and plots in Python

6
Matplotlib for Python Developers: Effective techniques for data visualization with Python, 2nd Edition

Rating is 4.5 out of 5

Matplotlib for Python Developers: Effective techniques for data visualization with Python, 2nd Edition

7
Python Data Analytics: With Pandas, NumPy, and Matplotlib

Rating is 4.4 out of 5

Python Data Analytics: With Pandas, NumPy, and Matplotlib

8
Python and Matplotlib Essentials for Scientists and Engineers (Iop Concise Physics)

Rating is 4.3 out of 5

Python and Matplotlib Essentials for Scientists and Engineers (Iop Concise Physics)

9
Hands-On Data Analysis with Pandas: A Python data science handbook for data collection, wrangling, analysis, and visualization, 2nd Edition

Rating is 4.2 out of 5

Hands-On Data Analysis with Pandas: A Python data science handbook for data collection, wrangling, analysis, and visualization, 2nd Edition

10
Data Visualization with Python for Beginners: Visualize Your Data using Pandas, Matplotlib and Seaborn (Machine Learning & Data Science for Beginners)

Rating is 4.1 out of 5

Data Visualization with Python for Beginners: Visualize Your Data using Pandas, Matplotlib and Seaborn (Machine Learning & Data Science for Beginners)


How to change the marker style in a Matplotlib plot?

To change the marker style in a Matplotlib plot, you can use the marker parameter when calling the plot() function. This parameter allows you to specify the marker style using a string code.


Here is an example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
import matplotlib.pyplot as plt

# Sample data
x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

# Creating a line plot
plt.plot(x, y, marker='o')

# Customizing the plot
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Marker Style')

# Displaying the plot
plt.show()


In the above example, the marker='o' parameter sets the marker style to a circle shape. You can use other string codes to change the marker style to a different shape. Some commonly used marker styles include:

  • o - circle
  • s - square
  • D - diamond
  • * - star
  • . - point


You can find more marker styles in the Matplotlib documentation.


How to plot a surface plot in Matplotlib?

To plot a 3D surface plot in Matplotlib, you can use the plot_surface() function from the Axes3D module. This function takes three arguments - the X, Y, and Z coordinates of the points to be plotted on the surface.


Below is an example code to plot a surface plot in Matplotlib:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# Generate some sample data for the surface plot
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))

# Create a figure and a set of subplots
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

# Plot the surface plot
ax.plot_surface(X, Y, Z, cmap='viridis')

# Set labels and title
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_title('Surface Plot')

# Show the plot
plt.show()


In this example, the X and Y coordinates are created using np.meshgrid() and the Z coordinates are calculated using a mathematical function. The surface plot is created using the plot_surface() function on the ax object.


You can customize the surface plot by changing the color map (cmap), adding a color bar, changing the viewing angle, etc.


How to customize the line style in a Matplotlib plot?

To customize the line style in a Matplotlib plot, you can use the linestyle parameter in the plot() function. There are different line styles available, such as solid, dashed, dotted, or a combination of those.


Here's an example of how to customize the line style in a Matplotlib plot:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
import matplotlib.pyplot as plt

# Sample data
x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

# Create a plot
plt.plot(x, y, linestyle='--')  # Using dashed line style

# Customize the line style
plt.plot(x, y, linestyle='-.', linewidth=2)  # Using dash-dot line style with linewidth 2

# Show the plot
plt.show()


In this example, the first plot() function call uses a dashed line style (linestyle='--'), and the second plot() function call uses a dash-dot line style (linestyle='-') and a linewidth of 2 (linewidth=2).


You can experiment with different line styles and linewidth values to achieve your desired customization.


How to create a stacked bar plot using Matplotlib?

To create a stacked bar plot using Matplotlib, you can follow these steps:

  1. Import the necessary libraries:
1
2
import matplotlib.pyplot as plt
import numpy as np


  1. Define the data for the bar plot. Create an array or list for each category of data you want to plot, and combine them into a 2D array using the np.vstack function:
1
2
3
4
5
data1 = np.array([1, 2, 3, 4, 5])
data2 = np.array([2, 3, 4, 5, 6])
data3 = np.array([3, 4, 5, 6, 7])

data = np.vstack([data1, data2, data3])


  1. Create the figure and axes objects:
1
fig, ax = plt.subplots()


  1. Use the ax.bar function to create the stacked bar plot. Specify the positions, widths, and heights of the bars:
1
2
3
ax.bar(range(len(data[0])), data[0], label='Data 1')
ax.bar(range(len(data[0])), data[1], bottom=data[0], label='Data 2')
ax.bar(range(len(data[0])), data[2], bottom=data[0]+data[1], label='Data 3')


  1. Set the labels, title, and legend of the plot:
1
2
3
4
ax.set_xlabel('X-axis')
ax.set_ylabel('Y-axis')
ax.set_title('Stacked Bar Plot')
ax.legend()


  1. Finally, show the plot:
1
plt.show()


Putting it all together, the complete code for creating a stacked bar plot using Matplotlib would look like this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
import matplotlib.pyplot as plt
import numpy as np

data1 = np.array([1, 2, 3, 4, 5])
data2 = np.array([2, 3, 4, 5, 6])
data3 = np.array([3, 4, 5, 6, 7])

data = np.vstack([data1, data2, data3])

fig, ax = plt.subplots()
ax.bar(range(len(data[0])), data[0], label='Data 1')
ax.bar(range(len(data[0])), data[1], bottom=data[0], label='Data 2')
ax.bar(range(len(data[0])), data[2], bottom=data[0]+data[1], label='Data 3')

ax.set_xlabel('X-axis')
ax.set_ylabel('Y-axis')
ax.set_title('Stacked Bar Plot')
ax.legend()

plt.show()


This code will create a stacked bar plot with three categories of data. Each category will be represented by a different color, and the bars will be stacked one above the other.


How to create subplots in Matplotlib?

To create subplots in Matplotlib, you can make use of the subplot() function. Here's a step-by-step approach:

  1. Import the necessary libraries:
1
import matplotlib.pyplot as plt


  1. Define the number and arrangement of subplots. This can be done using the subplot() function, which takes three arguments: the total number of rows, the total number of columns, and the index of the current subplot.
1
plt.subplot(rows, columns, index)


For example, to create a grid of 2 rows and 2 columns with a specific index:

1
2
3
4
plt.subplot(2, 2, 1)  # 1st plot
plt.subplot(2, 2, 2)  # 2nd plot
plt.subplot(2, 2, 3)  # 3rd plot
plt.subplot(2, 2, 4)  # 4th plot


  1. Plot the data in each subplot using regular Matplotlib plotting functions like plot(), bar(), scatter(), etc.
1
2
3
4
5
6
7
8
9
plt.subplot(2, 2, 1)
plt.plot(x1, y1)
plt.title('Subplot 1')

plt.subplot(2, 2, 2)
plt.scatter(x2, y2)
plt.title('Subplot 2')

# ...


  1. Add any necessary global adjustments like figure titles or labels.
1
2
3
4
5
6
plt.suptitle('Main Title')

plt.subplot(2, 2, 1)
plt.ylabel('Y-axis')

# ...


  1. Finally, display the plot using plt.show().
1
plt.show()


By following these steps, you can create multiple subplots within a single Matplotlib figure.


How to plot 3D contours in Matplotlib?

To plot 3D contours in Matplotlib, you can use the contour function from the Axes3D module. Here's a step-by-step guide:

  1. Import the necessary modules:
1
2
3
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D


  1. Create a figure and an axes object:
1
2
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')


  1. Define the x, y, and z values for your data:
1
2
3
4
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))


  1. Plot the 3D contour plot using the contour function:
1
ax.contour3D(X, Y, Z, cmap='viridis')


  1. Customize the plot if needed:
1
2
3
4
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_title('3D Contour Plot')


  1. Show the plot:
1
plt.show()


Putting it all together, here's an example that shows how to plot a 3D contour plot for a function z = sin(sqrt(x^2 + y^2)):

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))

ax.contour3D(X, Y, Z, cmap='viridis')

ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_title('3D Contour Plot')

plt.show()


This will generate a 3D plot of the function with contours representing the height of the function in the z-axis.

Facebook Twitter LinkedIn Telegram Whatsapp Pocket

Related Posts:

To plot data from a Pandas DataFrame with Matplotlib, you can follow these steps:Import the required libraries: import pandas as pd import matplotlib.pyplot as plt Load or create a Pandas DataFrame with data that you want to plot. Decide on the type of plot yo...
To add a title to a Matplotlib plot, you can use the title() function provided by Matplotlib. The title can provide a brief description or name for the plot, which helps in understanding the visual representation of the data.Here is an example of how to add a ...
Adding legends to a matplotlib plot is a useful way to label the different elements or data series in a plot. A legend can provide context and make it easier to interpret the chart. Here is how you can add a legend to a matplotlib plot:Import the necessary lib...